ess.Rd
Compute the effective sample size for a LMM.
ess(G, cols = seq(ncol(G)), M = length(cols), h2, s2 = 1)
G | A FBM matrix of genotypes. Missing values are not handled. |
---|---|
cols | A vector of columns of G to be used in the model. By default, all columns of G are used. |
M | A scalar for normalization of the genetic relationship matrix: GRM = Z'Z / M, where Z is a matrix of standardized genotypes. By default, M = length(cols). |
h2 | The estimated heritability in the LMM. |
s2 | The estimated scaling constant for the variance components in the LMM. |
A data.frame of results.
#> A Filebacked Big Matrix of type 'code 256' with 1500 rows and 200 columns.G[1:5, 1:10]#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] #> [1,] 2 1 0 2 1 1 1 1 2 1 #> [2,] 1 2 1 1 2 1 1 2 1 1 #> [3,] 2 2 1 1 1 1 1 0 2 0 #> [4,] 0 2 0 2 1 0 0 1 0 2 #> [5,] 1 2 0 2 2 1 0 0 1 0ess(G, h2 = 0.5)#> N M h2 s2 mult ESS #> 1 1500 200 0.5 1 1.768339 2652.508ess(G, h2 = 0.8)#> N M h2 s2 mult ESS #> 1 1500 200 0.8 1 4.357941 6536.911